翻訳と辞書
Words near each other
・ Jacobs, Louisville
・ Jacobs, Pennsylvania
・ Jacobs, Wisconsin
・ Jacobs-Hutchinson Block
・ Jacobsbaai
・ Jacobsburg Environmental Education Center
・ Jacobsburg, Ohio
・ Jacobsdal
・ Jacobi polynomials
・ Jacobi Robinson
・ Jacobi rotation
・ Jacobi set
・ Jacobi sum
・ Jacobi symbol
・ Jacobi theta functions (notational variations)
Jacobi triple product
・ Jacobi zeta function
・ Jacobi's formula
・ Jacobi's four-square theorem
・ Jacobi's theorem
・ Jacobian
・ Jacobian conjecture
・ Jacobian curve
・ Jacobian ideal
・ Jacobian matrix and determinant
・ Jacobian variety
・ Jacobiasca formosana
・ Jacobie Adriaanse
・ Jacobikerk
・ Jacobin


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Jacobi triple product : ウィキペディア英語版
Jacobi triple product
In mathematics, the Jacobi triple product is the mathematical identity:
:\prod_^\infty
\left( 1 - x^\right)
\left( 1 + x^ y^2\right)
\left( 1 +\frac\right)
= \sum_^\infty x^ y^,

for complex numbers ''x'' and ''y'', with |''x''| < 1 and ''y'' ≠ 0.
It was introduced by in his work ''Fundamenta Nova Theoriae Functionum Ellipticarum''.
The Jacobi triple product identity is the Macdonald identity for the affine root system of type ''A''1, and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra.
== Properties ==

The basis of Jacobi's proof relies on Euler's pentagonal number theorem, which is itself a specific case of the Jacobi Triple Product Identity.
Let x=q\sqrt q and y^2=-\sqrt. Then we have
:\phi(q) = \prod_^\infty \left(1-q^m \right) =
\sum_^\infty (-1)^n q^}.\,
The Jacobi Triple Product also allows the Jacobi theta function to be written as an infinite product as follows:
Let x=e^ and y=e^.
Then the Jacobi theta function
:
\vartheta(z; \tau) = \sum_^\infty e^} n z}

can be written in the form
:\sum_^\infty y^x^.
Using the Jacobi Triple Product Identity we can then write the theta function as the product
:\vartheta(z; \tau) = \prod_^\infty
\left( 1 - e^\right)
\left(1 + e^} z}\right )
\left(1 + e^} z}\right ).

There are many different notations used to express the Jacobi triple product. It takes on a concise form when expressed in terms of q-Pochhammer symbols:
:\sum_^\infty q^}z^n =
(q;q)_\infty \; \left(-\frac;q\right)_\infty \; (-zq;q)_\infty,
where (a;q)_\infty is the infinite ''q''-Pochhammer symbol.
It enjoys a particularly elegant form when expressed in terms of the Ramanujan theta function. For |ab|<1 it can be written as
:\sum_^\infty a^} \; b^} = (-a; ab)_\infty \;(-b; ab)_\infty \;(ab;ab)_\infty.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Jacobi triple product」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.